STATE Of STRESS OF A STRIP (BEAM) WITH A RECTILINEAR THINWALLED INCLUSION

PMM, Vol. 43, No. 2, 1979 pp 342-348
M. S. DRAGAN and V. K. OPANASOVICH
(L'vov)
(Received June 8, 1978)

The influence of a rectilinear thin-walled isotropic inclusion of finite length on the state of stress of a strip (beam) is studied. A system of two singular in-tegro-differential Prandt1-type equations is obtained, whose solution is suitable for an inclusion of any stiffness: from absolutely rigid or flexible but inextensible, to absolutely pliable (slit). Thus, a relation is constructed between the theory of cracks and the theory of thin-walled elastic inclusions. Formulas are presented for the stress distribution in the neighborhood of the end of the thin-walled inclusion.

Fig. 1

1. Let us consider an isotropic elastic strip (beam) weakened by a thin-walled elastic inclusion directed perpendicularly to the side faces of the strip (Fig. 1). Let $2 H$ and 2τ, respectively, be the width and thickness of the strip, and $2 l$ and $2 h$ the length and width of the inclusion. We introduce a rectangular Cartesian coordinate system and assume that the inclusion is along the $o x$-axis at $a \leqslant x \leqslant b$ and
$-h \leqslant y \leqslant h$ in the $x o y$ plane, Let external loads in the middle plane of the strip act on this strip, and let the faces of the strip parallel to the xoy plane be assumed free of external stresses.

The quantities characterizing the thin-walled inclusion will be denoted with a zero subscript. The plus and minus superscripts will denote the boundary values of the functions for $y \rightarrow+0$ and $y \rightarrow-0$, respectively. We denote the segment $[a, b]$ of the real axis by L.

The following boundary conditions hold on the edges of the inclusion

$$
\begin{equation*}
\left(\sigma_{y}-i \tau_{x y}\right)_{0} \pm=\left(\sigma_{y}-i \tau_{x y}\right) \pm,(u+i v)_{0} \pm=(u+i v)^{ \pm} \tag{1,1}
\end{equation*}
$$

Following [1], let us consider the strip as an unbounded plate, then the components $\sigma_{x}, \sigma_{y}, \tau_{x y}$ of the stress tensor and the components u and v of the displacement vector are expressed, under the condition of the plane problem of elasticity theory, in terms of two analytic functions $\Phi(z)$ and $\Omega(z)$ by the following formulas:

$$
\begin{align*}
& \sigma_{x}+\sigma_{y}=2[\Phi(z)+\overline{\Phi(z)}] \tag{1.2}\\
& \sigma_{y}-i \tau_{x y}=\Phi(z)+\Omega(\bar{z})+(z-\bar{z}) \overline{\Phi^{\prime}(z)} \\
& 2 \mu\left(u^{\prime}+i v^{\prime}\right)=\kappa \Phi(z)-\Omega(\bar{z})-(z-\bar{z}) \overline{\Phi^{\prime}(z)}
\end{align*}
$$

For the problem formulated, let us first examine two auxiliary functions of the form

$$
\begin{align*}
& \Phi_{0}(z)=A_{0} z^{n}+A_{1^{2}}^{z^{n-1}}+\ldots+A_{n}, \Omega_{0}(z)=B_{0} z^{n}+B_{1} 1^{n-l}+ \tag{1.3}\\
& \quad \ldots+B_{n}
\end{align*}
$$

which determined the state of stress in a strip without an inclusion depending on the value of the coefficients A_{j} and $B_{i}(j=0.1, \ldots, n)$.

Neglecting quantities of higher order of smallness as compared to $h R$, we have for a thin-walled inclusion on the basis of (1.2)

$$
\begin{align*}
& \left(\sigma_{y}-i \tau_{x y}\right)_{0}^{+}+\left(\sigma_{y}-i \tau_{x y}\right)_{0}^{-}- \tag{1,4}\\
& \quad \frac{2}{\left(1+x_{0}\right)}\left[\left(1-x_{0}\right) K(x)+2 M(x)+2 \overline{K(x)}+2 \overline{M(x)}\right], \quad x \in L \\
& \left(\sigma_{y}-i \tau_{x y}\right)_{0}^{+}-\left(\sigma_{y}-i \tau_{x y}\right)_{0}=2 i h K^{\prime}(x), x \in L \\
& \left(u^{\prime}+i v^{\prime}\right)_{0}^{+}-\left(u^{\prime}+i v^{\prime}\right)_{0}^{-}-\frac{h}{\mu_{0}} M^{\prime}(x), \quad x \in L \\
& \left(u^{\prime}+i v^{\prime}\right)_{0}^{+}+\left(u^{\prime}+i v^{\prime}\right)_{0}^{-}= \\
& \quad \frac{1}{\mu_{n}\left(1-\mu_{0}\right)}\left[2 \mu_{0} K(x)+\left(x_{0}-1\right) M(x)-2 \overline{K(x)}-2 \overline{M(x)}\right], \quad x \in L
\end{align*}
$$

where $K(x)$ and $M(x)$ are unknown functions to be determined,
Starting from (1.2), we write the boundary conditions on the edges of the inclusion in the form

$$
\begin{align*}
& \left(\sigma_{y}-i \tau_{x y}\right)^{+}+\left(\sigma_{y}-i \tau_{x y}\right)^{-}=[\Phi(x)+\Omega(x)]^{+}-1 \tag{1.5}\\
& \quad[\Phi(x)+\Omega(x)]^{-}, x \in L \\
& \left(\sigma_{y}-i \tau_{x y}\right)^{+}-\left(\sigma_{y}-i \tau_{x y}\right)^{-}=[\Phi(x)-\Omega(x)]^{+}-[\Phi(x)- \\
& \quad \Omega(x)]^{-}+2 K_{1}(x), x \in L \\
& \left(u^{\prime}+i v^{\prime}\right)^{+}+\left(u^{\prime}+i v^{\prime}\right)=\frac{1}{2 \mu}\left\{x\left[\Phi^{+}(x)+\Phi^{-}(x)\right]-\left\{\Omega^{+}(x)+\Omega^{-}(x)\right]\right\} \\
& x \in L \\
& \left(u^{\prime}+i v^{\prime}\right)^{+}-\left(u^{\prime}+i v^{\prime}\right)^{-}= \\
& \quad \frac{1}{2 \mu}\left\{x\left[\Phi^{+}(x)-\Phi^{-}(x)\right]+\left[\Omega^{+}(i)-\Omega^{-}(x)\right]+2 H_{1}(x)\right\}, \quad x \in L \\
& K_{1}(x)=i h\left[\Phi_{0}^{\prime}(x)-\Omega_{0}^{\prime}(x)+2 \overline{\Phi_{0}^{\prime}(x)}\right] \frac{\min \left\{\mu_{0}, \mu\right)}{\mu} \tag{1,6}\\
& M_{1}(x)=i h\left[x \Phi_{0}^{\prime}(x)+\Omega_{0}^{\prime}(x)-2 \overline{\Phi_{0}^{\prime}(x)}\right] \frac{\min \left(\mu_{0}, \mu\right)}{\mu_{0}}
\end{align*}
$$

Using the dependence (1.1), we obtain the following boundary value problem to determine the piecewise-holomorphic functions $\Phi(z)$ and $\Omega(z)$ with the line of jumps L from (1.4) and (1.5):

$$
\begin{align*}
& {[\Phi(x)-\Omega(x)]^{+}-[\Phi(x)-\Omega(x)]^{-}=2 i h K^{\prime}(x)-} \tag{1.7}\\
& \quad 2 K_{1}(x), x \in L \\
& {[x \Phi(x)+\Omega(x)]^{+}-[x \Phi(x)+\Omega(x)]^{-}=\frac{2 \mu}{\mu_{0}} i h M^{\prime}(x)-2 M_{1}(x), \quad x \in L} \\
& {[\Phi(x)+\Omega(x)]^{+}+[\Phi(x)+\Omega(x)]^{-}=} \tag{1.8}\\
& \quad \frac{2}{\left(1+x_{0}\right)}\left[\left(1-x_{0}\right) K(x)+2 M(x)+2 \overline{K(x)}+2 \overline{M(x)}\right], \quad x \in L \\
& x\left[\Phi^{+}(x)+\Phi^{-}(x)\right]-\left[\Omega^{+}(x)+\Omega^{-}(x)\right]= \\
& \quad \frac{2 \mu}{\mu_{0}\left(1+x_{0}\right)}\left[2 x_{0} K(x)+\left(x_{0}-1\right) M(x)-2 \overline{K(x)}-2 \overline{M(x)}\right], \quad x \in L
\end{align*}
$$

Solving the linear conjugate problem (1.7), we find

$$
\begin{align*}
& \Phi(z)=\frac{h}{\pi(1+x)}\left[I_{k}(z)+\frac{\mu}{\mu_{0}} I_{m}(z)\right]+\Phi_{0}(z) \tag{1.9}\\
& \Omega(z)=\frac{h}{\pi(1+x)}\left[-x I_{k}(z)+\frac{\mu}{\mu_{0}} I_{m}(z)\right]+\Omega_{0}(z) \\
& I_{k}(z)=\int_{a}^{i b} \frac{\left[K^{\prime}(t)-K_{2}(z)\right] d t}{t-z}, \quad I_{m}(z)=\int_{a}^{b} \frac{\left[M^{\prime}(t)-M_{2}(t)\right] d t}{t-z} \\
& K_{2}(x)=\frac{1}{i h} K_{1}(x), \quad M_{2}(x)=\frac{\mu_{0}}{i h \mu} M_{1}(x)
\end{align*}
$$

Using (1.9) and (1.8) we obtain the following system of singular integro-differential, Prandt1-type equations to determine the unknown functions $K(x)$ and $M(x)$:

$$
\begin{align*}
& \left.\frac{1}{\left(1+x_{0}\right)}\left[1-x_{0}\right) K(x)+2 M(x)+\overline{2 K(x)}+2 \overline{M(x)}\right]- \tag{1,10}\\
& \frac{h(1-x)}{\pi(1+x)} I_{k}(x)-\frac{2 h \mu}{\pi \mu_{0}(1+x)} I_{m}(x)=\Phi_{0}(x)+\Omega_{0}(x), \quad x \in L \\
& \frac{\mu}{\mu_{0}\left(1+x_{0}\right)}\left[2 x_{0} K(x)+\left(x_{0}-1\right) M(x)-2 \overline{K(x)}-2 \overline{M(x)}\right]- \\
& \frac{2 h x}{\pi(1+x)} I_{k}(x)-\frac{h \mu(x-1)}{\pi \mu_{0}(1+x)} I_{m}(x)=x \Phi_{0}(x)-\Omega_{0}(x), \quad x \in L
\end{align*}
$$

2. Following [2], we seek the solution of the system (1.10) in the form

$$
\begin{align*}
& K\left(x_{1}\right)=K_{0}+K_{3}\left(x_{1}\right)-\sqrt{1-x^{2}} \sum_{m=1}^{\infty} \frac{1}{m} X_{m} U_{m-1}(x) \tag{2.1}\\
& M\left(x_{1}\right)=M_{0}+M_{3}\left(x_{1}\right)-\sqrt{1-x^{2}} \sum_{m=1}^{\infty} \frac{1}{m} Y_{m} U_{m-1}(x), \quad|x| \leqslant 1 \\
& x_{1}=\frac{b-a}{2} x+\frac{a+b}{2} \tag{2,2}
\end{align*}
$$

$$
\begin{aligned}
& K_{3}(x)=\left[\Phi_{0}(x)-\Omega_{0}(x)+2 \overline{\Phi_{0}(x)}-A_{n}+B_{n}-2 \overline{A_{n}}\right] \frac{\min \left(\mu_{0}, \mu\right)}{\mu} \\
& M_{3}(x)=\left[x \Phi_{0}(x)+\Omega_{0}(x)-2 \overline{\Phi_{0}(x)}-x A_{n}-B_{n}+2 \overline{A_{n}}\right] \frac{\min \left(\mu_{0}, \mu\right)}{\mu}
\end{aligned}
$$

Here $K_{0}, M_{9}, X_{m}, Y_{m}$ are unknown coefficients, $T_{m}(x)$ and $U_{m}(x)$ are Chebyshev polynomials of the first and second kinds, respectively.

Substituting (2.1) into (1.9), we find expressions for the functions $\Phi(z)$ and $\Omega(z)$

$$
\begin{aligned}
& \Phi(z)=-\frac{2 h}{(b-a)(1+x)} \sum_{m=1}^{\infty}\left(X_{m}+\frac{\mu}{\mu_{0}} Y_{m}\right)\left[\left(\frac{b-a}{2}\right) \frac{T_{m}\left(z_{1}\right)}{\sqrt{(z-a)(z-b)}}-\right. \\
& \left.\quad U_{m-1}\left(z_{1}\right)\right]+\Phi_{0}(z) \\
& \Omega(z)=\frac{2 h}{(b-a)(1+x)} \sum_{m=1}^{\infty}\left(x X_{m}-\frac{\mu}{\mu_{0}} Y_{m}\right)\left[\left(\frac{b-a}{2}\right) \frac{T_{m}\left(z_{i}\right)}{\sqrt{(z-a)(z-b)}}-\right. \\
& \left.\quad U_{m-1}\left(z_{1}\right)\right]+\Omega_{0}(z) \\
& z=\frac{b-a}{2} z_{1}+\frac{a+b}{2}
\end{aligned}
$$

Starting from (1.10) and (2.1), and following [2], we arrive at an infinite system of linear algebraic equations to determine the expansion coefficients X_{m} and Y_{m}

$$
\begin{align*}
& \frac{1}{\left(1+x_{0}\right)} \sum_{m=1}^{\infty} \frac{1}{m} H(m, n)\left[\left(1-x_{0}\right) X_{m}+2 Y_{m}+2 \bar{X}_{m}+2 \bar{Y}_{m}\right]+ \tag{2.4}\\
& \quad C_{1} X_{n}+C_{2} Y_{n}=D_{n} \\
& \frac{\mu}{\mu_{0}\left(1+x_{0}\right)} \sum_{m=1}^{\infty} \frac{1}{m} H(m, n)\left[2 x_{0} X_{m}+\left(x_{0}-1\right) Y_{m}-2 \bar{X}_{m}-2 \bar{Y}_{m}\right]+ \\
& \quad C_{3} X_{n}+C_{4} Y_{n}=P_{n} \quad 0, \quad \text { if } m+n \text { are odd } . \\
& H(m, n)=\left\{\begin{array}{c}
\frac{1}{(m+n+1)(m+n-1)}-\frac{1}{(m-n-1)(m-n+1)} \\
C_{1}=\frac{\pi h(1-x)}{(b-a)(1+x)}, \quad C_{2}=\frac{2 \pi h x \mu}{(b-a)(1+x) \mu_{0}} \\
C_{3}=\frac{2 \pi h x}{(b-a)(1+x)}, \quad C_{4}=\frac{\pi h \mu(x-1)}{(b-a) \mu_{0}(1+x)} \\
D_{0}=\frac{1}{\left(1+x_{0}\right)}\left[\left(1-x_{0}\right) K_{0}+2 M_{0}+2 \bar{K}_{0}+2 \bar{M}_{0}\right] \\
P_{0}=\frac{\mu}{\mu_{0}\left(1+x_{0}\right)}\left[2 x_{0} K_{0}+\left(x_{0}-1\right) M_{0}-2 \bar{K}_{0}-2 \bar{M}_{0}\right] \\
D_{n}=\int_{-1}^{1}\left\{-\Phi_{0}\left(x_{1}\right)-\Omega_{0}\left(x_{1}\right)+\frac{1}{\left(1+x_{0}\right)}\left[\left(1-x_{0}\right) K_{3}\left(x_{1}\right)+2 M_{3}\left(x_{1}\right)+\right.\right.
\end{array}\right. \tag{2,5}
\end{align*}
$$

$$
\begin{aligned}
& \left.\left.\quad \overline{2 K_{3}\left(x_{1}\right)}+2 \overline{M_{3}\left(x_{1}\right)}\right]+D_{0}\right\} \sqrt{1-x^{2}} U_{n-1}(x) d x \\
& P_{n}=\int_{-1}^{1}\left\{\Omega_{0}\left(x_{1}\right)-x \Phi_{0}\left(x_{1}\right)+\frac{\mu}{\mu_{0}\left(1+x_{0}\right)}\left[2 x_{0} K_{3}\left(x_{1}\right)+\left(x_{0}-1\right) M_{3}\left(x_{1}\right)-\right.\right. \\
& \left.\left.2 \overline{K_{3}\left(x_{1}\right)}-2 \overline{M_{3}\left(x_{1}\right)}\right]+P_{0}\right\} \sqrt{1-x^{2}} U_{n-1}(x) d x
\end{aligned}
$$

We assume the following values for D_{0} and $\operatorname{Re} P_{0}$

$$
\begin{equation*}
D_{0}=\left(A_{n}+B_{n}\right) \frac{\min \left(\mu_{0}, \mu\right)}{\mu}, \quad \operatorname{Re} P_{0}=\operatorname{Re}\left(x A_{n}-B_{n}\right) \frac{\min \left(\mu_{0}, \mu\right)}{\mu_{0}} \tag{2.6}
\end{equation*}
$$

and we find the constant $\operatorname{Im} P_{0}$ from the condition (Λ is the domain of the inclusion) [3]

$$
\begin{equation*}
\operatorname{Re} \int_{\Lambda} z[\bar{\Omega}(z)+\Phi(z)] d z=0 \tag{2.7}
\end{equation*}
$$

Taking account of (2.3), after manipulation we obtain from (2.7)

$$
\begin{equation*}
\operatorname{Im} X_{1}=0 \tag{2.8}
\end{equation*}
$$

By using the results of $[2,4]$, it can be shown that the system of linear algebraic equations (2.4) will be quasiregular.

Proceeding in the same manner as was done in [5], the state of stress in the neighborhood of the end of the inclusion can be represented in the polar r, θ coordinate system (Fig. 1) in the form

$$
\begin{align*}
& \left\|\begin{array}{l}
\sigma_{r} \\
\sigma_{\theta} \\
\tau_{r \theta}
\end{array}\right\|=\frac{K_{1}}{4 \sqrt{2 r}}\left\|\begin{array}{c}
5 \cos ^{1} / 2 \theta-\cos ^{3} / 2 \theta \\
3 \cos ^{1 / 2} \theta+\cos ^{3} /{ }^{*} \theta \\
\sin 1 / 2 \theta+\sin ^{3} / 2 \theta
\end{array}\right\|+ \tag{2.9}\\
& \frac{K_{2}}{4 \sqrt{2 r}}\left\|\begin{array}{r}
-5 \sin ^{1} / 2 \theta+3 \sin ^{3} / 2 \theta \\
-3 \sin ^{1} / 2 \theta-3 \sin ^{3} / 2 \theta \\
\cos ^{1} / 2 \theta+3 \cos ^{3} / 2 \theta
\end{array}\right\|+ \\
& \frac{K_{3}}{4 \sqrt{2 r}}\left\|\begin{array}{l}
5 \cos ^{1 / 2} \theta+(1+2 x) \cos 3 / 2 \theta \\
3 \cos ^{1 / 2} \theta-(1+2 x) \cos ^{3} / 2 \theta \\
\sin 1 / 2 \theta-(1+2 x) \sin 3 / 2 \theta
\end{array}\right\|+ \\
& \frac{K_{4}}{4 \sqrt{2 r}}\left\|\begin{array}{r}
-5 \sin ^{1 / 2} \theta+(1-2 x) \sin ^{3} / 2 \theta \\
-3 \sin 1 / 2 \theta-(1-2 x) \sin ^{3} / 2 \theta \\
\cos ^{1} / 2 \theta+(1-2 x) \cos ^{3} / 2 \theta
\end{array}\right\|+O\left(r^{\circ}\right)
\end{align*}
$$

Here $K_{i}(i=1,2,3,4)$ are stress intensity coefficients which are determined by the formulas

$$
\begin{align*}
& K_{1}{ }^{j}-i K_{2}{ }^{j}=-\frac{2 h \mu}{\mu_{0}(1+x)}\left(\frac{b-a}{2}\right)^{-1 / 2} \sum_{m=1}^{\infty}(-1)^{(m+1)(2-j)} Y_{m} \tag{2.10}\\
& K_{3}{ }^{j}-i K_{4}^{j}=-\frac{2 h}{(1+x)}\left(\frac{b-a}{2}\right)^{-1 / 2} \sum_{m=1}^{\infty}(-1)^{(m+1)(2-j)} X_{m}
\end{align*}
$$

($j=1$ for the end a and $j=2$ for the end b).
Passing to the limit in (1.10) or (2.4), respectively, as $\mu_{0} \rightarrow \infty, \mu_{0} \rightarrow 0, \mu_{0}$
$\rightarrow \mu$ and taking account of (1.9), (2.3), (2.6) and (2.8), we obtain the solution of the following problems: for an absolutely rigid inclusion, a pliable inclusion (slit), and a homogeneous strip (beam).
3. A numerical analysis was performed for the following cases: 1) pure beuding of a beam by moments M; 2) Deformation of a beam subjected to a uniformly distributed pressure of intensity q a long the length.

According to [1], the coefficients A_{i}, B_{i} have the following form

$$
A_{2}=M /(4 I), \quad B_{2}=3 M /(4 I), A_{i}=B_{t}=0 \quad(i=0,1,3,4, \ldots, n)
$$

in the first case and

$$
\begin{aligned}
& A_{0}=q /(24 I), \quad A_{2}=q\left(w^{2}-3 H^{2} / 5\right) /(8 I), \quad A_{3}=-q H^{3} /(12 I) \\
& B_{0}=7 q /(24 I), \quad B_{2}=q\left(3 w^{2}-11 H^{2} / 5\right) /(8 I), B_{3}=q H^{3} /(12 I) \\
& A_{i}=B_{i}=0 \quad(i=1,4,5, \ldots, n), \ldots,
\end{aligned}
$$

in the second case, where $I=4 \tau H^{3} / 3$ and $2 w$ is the length of the beam.
The dependence of the stress intensity coefficients $K_{i}^{\prime}=\sqrt{2} I K_{i} /\left(3 M a^{3 / 2}\right)(i=$ $1,2,3,4$) on the relative stiffness of the inclusion and the strip $k=\mu_{0} / \mu$ is represented in Figs. 2 and 3. The same dependence but only the quantities $K_{i}^{\prime}=I K_{i} /$ $\left(\sqrt{2} q a^{7 / 2}\right)$ are given in Figs. 4 and 5 . Curves 1 and 2 characterize the stress intensity coefficients ($-K_{1}{ }^{\prime}$) and ($-K_{3}{ }^{\prime}$) respectively, at the point a, and curves 3 and 4 the K_{1}^{\prime} and K_{3}^{\prime} at the point b. Let us note that the curves in Figs. 3 and 5 are a continuation of the correspending curves in Figs. \& and 4. For the examples under consideration $K_{2}{ }^{\prime}=K_{4}^{\prime}=0$. In the first case the calculations are performed for the following values of the parameters in the problem: $h / a=0.45, b!a=10$, and in the second for $h / a=0.2, b / a=5, H / a=10$, and $w / a=10$. For both cases it is considered that the Poisson's ratios equal $v=v_{0}=1 / 3$.

Fig. 2

Fig. 3

Fig. 4

Fig. 5

REFERENCES

1. Panasiuk, V. V., Ultimate Equilibrium of Brittle Bodies with Cracks. "Naukova Dumka", Kiev, 1963.
2. Morart, G. A. and Popov, G. Ia., On the contact problem for a half-plane with finite elastic reinforcement, PMM, Vol. 34, No. 3, 1970.
3. Muskhelishvili, N. I., Some Basic Problems of the Mathematical Theory of Elasticity, (English translation), Groningen, Noordhoff, 1953.
4. Sulim, G. T., Regularity of some systems of linear algebraic equations, Visn. L'vivs'k. Univ. Ser. Mekhan., Matem., No. 10, 1975.
5. Panasiuk, V. V., Savruk, M. P., and Datsishin, A. P., Stress Distribution Around Cracks in Plates and Shells," Naukowa Dumka", Kiev, 1976.
