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The influence of a rectilihear thin-walled isotropic inclusion of finite length 
on the state of stress of a strip (beam) is studied, A system of two singular in- 
tegro-differential Prandtl-type equations is obtained, whose solution is suitable 

for an inclusion of any stiffness: from absolutely rigid or flexible but inextens- 
ible, to absolutely pliable (slit). Thus, a relation is constructed between the 
theory of cracks and the theory of thin-walled elastic inclusions. Formulas 
are presented for the stress distribution in the neighborhood of the end of the 

thin- walled inclusion. 
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Fig. 1 

1. Let us consider an isotropic elastic strip (beam) weakened by a thin- walled el- 
astic inclusion directed perpendicularly to the side faces of the strip (Fig. 1). Let 2H 
and 22 , respectively, be the width and thickness of the strip, and 21 and 2h 
the length and width of the inclusion. We introduce a rectangular Cartesian coordin- 
ate system and assume that the inclusion is along the ox-axisat a<x< b and 

- h < y < h in the Soy plane, Let external loads in the middle plane of the 
strip act on this strip, and let the faces of the strip parallel to the soy plane be ass- 
umed free of external stresses. 

The quantities characterizing the thin- walled inclusion will be denoted with a zero 
subscript. The plus and minus superscripts will denote the boundary values of the fun- 
ctions for y 3 +O and y -_, -0, respectively. We denote the segment [a, bl 
of the real axis by L. 

The following boundary conditions hold on the edges of the inclusion 

(a, - iz,,),f = &/ - iT&, (U + iv),* = (U + iv)f (1.1) 
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0 
Polle~ing El], let US consider the strip as an unbounded plate, then the mmponents 

32, 43(* 5%~ of the sbess hwm and the components U and u of the displacement 

vector are expressed, under the condition of the plane problem of elasticity theory, in 
terms of two aWytic functions @ (2) and St (2) by the following formulas: 

IT, -I- cf, = 2 [4, (z) + a, @)I (1. 2> 

cfu - izxy -- al (2) + St (z) + (2 - 5) w (z) 

2 p (u’ + iu’) = dD (s) - Q (3) - (2 - z) w (z) 
FCC the problem formulated, let us first examine two auxiliary functions of the 

form 
m. (2) = A$” + AIZ~-’ + . . . -I- A,,.510 (2) = B$” -i- BIZ”“~ -t- (l-3) 

..a -i- 4 

which determined the state of stress in a strip without an inclusion depending on the 
value of the coefficients Aj and B, (j = 0. 1, _ . . ~ n). 

Neglecting quantities of higher order of smallness as compared to I&!, we have 
for a thin- walled inclusion on the basis of (1.2) 

0-Q - iT,,)@f j- fog - &fo --I fl. 41 

2 
--[(I - 7X0) K (zf + 
II 5 %J 

2111 (z> + 2K(5)4- 2:@$, 5 E L 

&+ ~ax,ri(~~--t_(‘4CU-1)A~~~~-z2rK(.C)--.~J(2)], .rEL 
0 

where K 1x} and .)I (x) are unknown functions to be determined. 
Starting fro,m (1.2), we write the boundary conditions on the edges of the inclus- 

ion in the form 
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Using the dependence (1. l), we obtain the following boundary value problem to 
determine the piece~se-holomo~~c functions cf, (z) and Q (z) with the line of 

jumps L from (1.4) and (1.5): 

[dD (CC) - Q @)I+ - m (2) - sz (r)l- = 2 WC’ (a?) - 
(I.. 7) 

2H1(4, ZE L 

Ix@ (4 + WI+ - lx@ (4 + wa- =+r(s)-22M,(2), XEL 

IQ (4 A- Q (41’ -I- P f4 -I- G+ kw = (l&Q) 

~~[(~-xO)K(~)+2M(~)+2K(s)+2~j, XEL 

94 I@+ (9 + @- (31 - [Qf (z) + sl- (z)] = 

XEL 

solving the linear conjugate problem (1. ‘71, we find 

@(z) = h 
=(*-i-4 

(1.9) 

Using (1.9) and (1.8) we obtain the following system of singular tntegro-different- 
ial, handtl-type equations to determine the unknown functions K (5) and M (x): 

&) [(i 

-- 
- x0) K (9 f 2113 (x) + 2K (ix) + 2M (z)] - (1,lO) 

;;;;;; Ik(z) - 
2hv 

Jw (1 -+ x) 
J,(5) =@o(x)+Qo($ XEL 

-- 
/Lo(* “i- $$@) I2xoIj: (xl + (% - 1) hf (4 - 21i: (4 - 2M @)I - 

2hx 

n(1i-q 
Ik (x) - J E L 

2. Following [Z], we seek the solution of the system (1,lO) in the form 

OD 1 
K @I) = KfJ -I- Ka (a) - YQ x y- &n urn-1 (4 

(2.1) 

7?S=l 

CQ 

M(q) = iI!f(l+ Mg(Q)- 1/i - 39 
c 

-+&l-l@), I4\c 1 

??&=I 

b-u a+b 
(2.2) 

2 =---x+--yf-- 1 2 
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Here KG, MO, X,, Y,,, are unknown coefficients, Tm (2) and U, (x) are 
Chebyshev polynomials of the first and second kinds, r-ectively. 

Substituting (2.1) into (1.91, we find expressions for the functions 

Q (4 
cf, (z) and 

b-u a+b 
z=-zl+~ 2 

Starting from (1.10) and (2, l), and following [Z], we arrive at an infinite system 
of linear algebraic equations to determine the expansion coefficients Xm and Ym 

m ._ 

VCXU) c fqm, n)I(~-~)~rn+~~m+~f5,+~fi,l+ (2.4) 

m=l 
GX, 4 G%y, = & 

P m 1 

PO (*+x0) c x H (na, n) I2xaXm + (3% - 1) Ym - 2x, - 27,] + 
m=i 

G&a + c,y, = p?l 

H(?n, n) = (“%+rz+*~;m+n-i, - (m-n-l;(m-n+*) (2,5f 
if m + n are even 

0, if M f n are odd . 

c1 = (b 
nh(l -X) 
--a)(1 +4 ’ 

cs z (b 2nhlel” 
- a) (1 + 4 PO 

2nhx 
c3 = (6 - a) (1 +x) ’ 

& = (b 
nhp (x - 1) 

-“)Po(l +x1 

Do =(1+x0) 
-L [(i - xg) I’co + 2Mo + 2zcl f 2Mo] 
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2K3 (XI) + 2M3 (%)I t- Do} 9 1- 9 un-1 (z) dir 

1 

P,= 
St Qil (XI) - xQl (x1) +po tip+ X”) [2xoK&,) + No - Wf&+- 

-- 
2K:;q) - 2M3 (XI)] + PO} VI- xa Un-l(x) dx 

We assume the following values for D o and Re p o 

DO = (A, f B,) minp’ p) , Re PO = Re (%A, - B,) min$“y p) (2. 6) 

and we find the constant Im PO from the condition (h is the domain of the incl- 

usion) [3] 
ReJz[fi(z)+b,(z)]dz=O 

A 
(2.7) 

Taking account of (2.3), after manipulation we obtain from (2.7) 

Im X, = 0 (2.8) 

By using the results of [2,4], it can be shown that the system of linear algebraic equat- 

ions (2.4) will be quasiregular. 
Proceeding in the same manner as was done-in [5], the state of stress in the neigh- 

borhood of the end of the inclusion can be represented in the polar r, 8 coordinate 

system (Fig. 1) in the form 

or 5cos1/s 0 - COS3/~ 0 

= A& 3cosl/g e-j- cosy:e + 
(2.9) 

% 

Ge 
4 v/21 

sin l/s 0 + sin 3/a 8 

- 5sin l/s 8 + 3sin 3/s 8 
Ks 

z 
- 3sin l/s 0 - 3sin 3/s 8 

cos r/s 0 + 3cos 3/a 0 
5cos 11% 8 + (1-p 2x) cos 3/a 8 1 

K3 

41/2; 
3cos l/2 8 - (1 + 2x) cos 3/a 8 + 

sin lla 0 - (1 + 2x) sin 3/z 8 
- 5sin 1/S 8 + (1 - 2x) sin 3/a 8 1 

K4 
4Jfz 

- 3sin 1/a 8 - (1 - 2x) sin 3/2 8 + 0 (P) 

c6dj2e + (4 - 2%) c~~3~2e 

Here Ki (i = 1, 2, 3, 4) are stress intensity coefficients which are determined by 

the formulas 

Klj _ iKaj = - (2.10) 

v&=1 

K3]-iKh= 
(2hx) ("1")""~ (_l)(m+lm-~)Xm 

rn=l 
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0’ = 1 for the end LX and j = 2 for the end b). 

Passing to the limit in (1.10) or (2.4), respectively, as PO + 00, PO 3 0, p0 

+ P and taking account of (1.9), (2.3), (2. 6) and (2.8), we obtain the solution of 

the following problems: for an absolutely rigid inclusion, a pliable inclusion (slit), and 
a homogeneous strip (beam). 

3. A numerical analysis was performed for the following cases: 1) pure bending of 
a beam by moments M : 2) Deformation of a beam subjected to a uniformly distribut- 

ed pressure of intensity q along the length. 
According to [l], the coefficients A it Bi have the following form 

A, = M I (41): Bs -i 3M / (4Z), Ai = Bt = 0 (i = 0, 1, 3, 4, . . ., n) 

in the first case and 

A, = q f (24Z), AZ = q (ti - 3H% I 5) / @I), AS = -qHs / (121) 

B,, = 7q / (24Z), B, = q (3w2 - llHa / 5) I (8Z), Bs = qHz i (121) 

Ai = Bi = 0 (i = 1, 4, 5, * s s) n), * * *) 

in the second case, where Z = 4~~s / 3 and 2v is the length zf the beam. 
The dependence of the stress intensity coefficients &’ = lf2ZKi / (3Ma”“) (i = 

1, 3, 3, 4) on the relative stiffness of the inclusion and the strip k = PO / CL is repres- 
ented in Figs. 2 and 3. The same dependence but only the quantities gi’ = ZKi I 

(Y’&z’Z’) are given in Figs. 4 and 5. Curves 2 and 2 characterize the stress inten- 

sity coefficients (---I<,‘) and (--KS’) respectively, at the point a, and curves 3 

and 4 the K,’ and KS at the point b. Let us note that the curves in Figs. 3 and 

5 are a continuation of the corresponding curves in Figs. ti\ and 4. For the =am@s 

under consideration Ks’ = ZC~’ = 0. In the first case the calculations are performed 

for the following values of the parameters in the problem: h / a = 0.45, b ! a = 10, 

and in the second for h / a = 0.2, b / a = 5, H / a = 10,andw I a = tO.For both cases 

it is considered that the Poisson’s ratios equal v = %I = 1/8. 

Fig. 2 Fig. 3 
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